1	$8.5^2 - (8 \div 2)^2 (= 56.25)$ or $\cos x = \frac{4}{8.5}$			4	M1	or e	$eg \cos A = \frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5}$
,	$\sqrt{56.25}$ (= 7.5) or $x = \cos^{-1}\left(\frac{4}{8.5}\right)$ (= 61.927)			M1		eg =) $\cos^{-1} \left(\frac{8^2 + 8.5^2 - 8.5^2}{2 \times 8 \times 8.5} \right) (61.927)$ are angle = 56.144)
	$8 \times \text{``}7.5\text{'`} \div 2 \text{ oe or } 0.5 \times 8 \times 8.5 \times \sin \text{``}61.927$				M1		eg 0.5 × 8.5 × 8 × sin61.927oe
		3	30		A1		Total 4 marks
2	30 + 4x + 10 + x + 20 = 5x + 60 or $180 - 30$ ((=150)			4	M1	Allow $5x + 60 = n$ M2 for where $n \neq 180$ or for $5x + 30 = 150$ subtracting 30 from 180 oe
	e.g. $30 + 4x + 10 + x + 20 = 180$ or $5x + 60 = 18$ or $180 - 30 - 10 - 20$ (=120) oe eg $180 - 60$	80 oe				M1	for setting up the equation or for subtracting all numerical values of
	5x = 120 or " 120 " ÷ 5					M1	angles from 180 dep on M2 for correctly simplifying to $ax = b$ or for dividing "120" by 5
				24		A1	for 24 Total 4 mark
3	(180 – 44) ÷ 2 (= 68)						M1 May be seen on diagram
	180 - '68' or 44 + '68'		11)		3	M1 A1
			11.				Total 3 mark
4	e.g. $\sin 65 = \frac{16}{AB}$ or $\cos 25 = \frac{16}{AB}$ or $\frac{AB}{\sin 90} = \frac{16}{\sin 65}$ or $\tan 65 = \frac{16}{AD}$ or $\tan 25 = \frac{AD}{16}$ or $\frac{AD}{\sin 25} = \frac{16}{\sin 65}$				4	M1	for a correct trig ratio for AB or AD accept 180 – 90 – 65 for 25
4	$\mathbf{or} \ \frac{AB}{\sin 90} = \frac{16}{\sin 65} \ \mathbf{or} \ \tan 65 = \frac{16}{AD}$				4	M1	accept $180 - 90 - 65$ for 25 for finding AB and AD Allow use of Pythagoras
4	or $\frac{AB}{\sin 90} = \frac{16}{\sin 65}$ or $\tan 65 = \frac{16}{AD}$ or $\tan 25 = \frac{AD}{16}$ or $\frac{AD}{\sin 25} = \frac{16}{\sin 65}$ e.g. $(AB =)\frac{16}{\sin 65} (= 17.654)$				4		for finding AB and AD Allow use of Pythagoras $(AD =) \sqrt{17.654^2 - 16^2} (= 7.460)$
4	or $\frac{AB}{\sin 90} = \frac{16}{\sin 65}$ or $\tan 65 = \frac{16}{AD}$ or $\tan 25 = \frac{AD}{16}$ or $\frac{AD}{\sin 25} = \frac{16}{\sin 65}$ e.g. $(AB =) \frac{16}{\sin 65} (= 17.654)$ or $(AB =) \frac{16}{\cos 25} (= 17.654)$ or $(AB =) \frac{16\sin 90}{\sin 65} (= 17.654)$				4		accept $180 - 90 - 65$ for 25 for finding AB and AD Allow use of Pythagoras

		30.2	AI	accept 43.0 = 30.0	
				·	Total 4 marks
5	$8^2 + 15^2 (= 289)$		5	M1	
	$\sqrt{8^2+15^2}$ (=17)			M1	
	$\pi \times "8.5"^2(226.98)$ or $0.5 \times 15 \times 8 (= 60)$			M1	
	$n \times 6.5$ (220.96) 61 0.3 \times 13 \times 6 (= 00)				
	110 5112 0 5 15 0			M1	
	$\pi \times "8.5"^2 - 0.5 \times 15 \times 8$			IVII	
	("226.98" – "60")				
		167		A.1. A	1:1 14
					which round to
				167	
			1		Total 5 marks

50.2

 $("17.654..." \times 2) + ("7.460..." \times 2)$ oe

for a complete method to find the perimeter

accept 49.6 – 50.6

6	48 ÷ 4 (=12)		4	M1 could be on diagram
	30 - "48 ÷ 4" (= 18) or 9			M1 allow 9 on correct side of the triangle on
				the diagram
	$3 \times "18" + "12"$ or $6 \times "18 \div 2" + "12"$ or			M1 for a complete correct method
	"54" + "12"			
		66		Al
				Total 4 marks

7 $\cos 30 = \frac{24}{(AC)} \text{ or } \sin 60$ $\mathbf{or} \frac{\sin 60'}{24} = \frac{\sin 90}{(AC)} \text{ oe}$ $(AC =) \frac{24}{\cos 30} (= 16\sqrt{3})$ $(AC =) \frac{24}{\sin 60'} (= 16\sqrt{3})$ $\mathbf{or} (AC =) \frac{24}{\sin 60'}$ $\mathbf{or} (AC =) \frac{24}{\sin 60'}$	= 27.712) or	5	M1 for correct trig ratio involving AC M1 for a correct trig ratio for AC	M2 for use of tan and Pythagoras to obtain AC $(AB =) 24 \tan 30 (=13.856)$ and $\sqrt{13.856^2 + 24^2} (=27.712)$ If not M2, then M1 for use of tan and Pythagoras to obtain AC^2 $(AB =) 24 \tan 30 (=13.856)$ and $(AB =) 24 \tan 30 (=3.856)$ and $(AB =) 24 \tan 30 (=3.856)$
$\frac{1}{2} \times 2 \times \pi \times 3 \ (= 3\pi = 9.42)$	24)			or $2\pi \times 3$ correctly to find the arc length or circumference of a circle with radius 3.
'27.712' + '9.424'	-2×3		AFEDC	e correct method to find the length
	31		A1 accept answer	s in range from 31 to 31.15
				Total 5 marks

9	(ABD =) 360 – 52 – 112 – 90 (= 106)		4	M1	may be marked in correct place on diagram
	(CBD =) 180 - "106" (=74)		4	M1	may be marked in correct place on diagram
	(CDD) 100 100 (74)	32		Al	may be marked in correct place on diagram
•		Reasons given		B1	dep on M1
					At least two appropriate reasons given. "angles in a quadrilateral add to 360°" accept 4-sided shape.
					"angles on a straight line add to 180° " or angles on a straight line add to 180°
					"angles in a <u>triangle</u> add to <u>180</u> °" or <u>angles</u> in a <u>triangle</u> sum to 180°
					"base angles in an <u>isosceles</u> triangle (are equal)"
					Total 4 mark

10	$\frac{1}{2} \times 7 \times h = 42 \text{ oe or } (h =) \frac{42 \times 2}{7} (= 12) \text{ oe or}$ $3.5^2 + h^2 = y^2 \text{ or } h = \sqrt{y^2 - 3.5^2} \text{ oe}$		4	M1	A correct equation involving the height or a correct expression for height – could be in terms of <i>y</i>
	$y^2 = \left(\frac{7}{2}\right)^2 + ("12")^2 \text{ oe } \text{ or } \frac{1}{2} \times 7 \times "\sqrt{y^2 - 3.5^2}" = 42 \text{ oe}$			M1	(indep) use of <i>their</i> height (any found value that they have called 'height')
	$y = \sqrt{\left(\frac{7}{2}\right)^2 + ("12")^2}$ oe			M1	all values must come from a correct method
	Correct answer scores full marks (unless from obvious incorrect working)	12.5		Al	oe eg $\frac{25}{2}$
					Total 4 marks

11	(a)	60	1	B1 cao
	(b)(i)	58	1	B1
	(ii)	correct reason	1	B1 for <u>angles</u> in a <u>triangle</u> add up to 180°
				or
				for angles in a <u>triangle</u> add up to <u>180°</u>
				Total 3 marks